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Abstract

Many prosodic theories hold that different syntactic structures

are mapped to distinct prosodic organizations; these theories

predict that acoustic and articulatory correlates of these struc-

tures differ mainly at phrase boundaries, yet no studies have

investigated whether such predictions are correct. This study

uses a novel neural network-based analysis method for tem-

porally localizing prosodic information that is associated with

syntactic contrast in acoustic and articulatory signals. Specif-

ically, we focus on the contrast between non-restrictive and

restrictive relative clauses. Neural networks were trained on

multi-dimensional acoustic and articulatory data to classify the

two types of relative clauses, and the network accuracies on

test data were analyzed. The results found two different pat-

terns: syntactically conditioned prosodic information was ei-

ther widely distributed around the boundaries or narrowly dis-

tributed at specific locations. The findings suggest that prosodic

expression of syntactic contrasts does not occur in the uniform

way or at a fixed location, but rather it is accomplished with

various strategies.
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1. Introduction

Many theories of the syntax-prosody interface argue that dif-
ferent syntactic structures are associated with distinct prosodic
organizations. Specifically, the left and right edges of syntac-
tic constituents are mapped to varying strengths of prosodic
boundaries based on sentence structure. Under these theories,
acoustic and articulatory correlates of syntactic structures are
predicted to be observed mainly at phrase boundaries, as pho-
netic measures at phrase-final or initial position would reflect
different prosodic boundary strengths. Previous studies have
taken this prediction for granted and examined phrase edges to
find acoustic and articulatory differences between a contrast-
ing set of syntactic structures (e.g. Cooper and Sorensen 1977;
Garro and Parker 1982; Kim and Tilsen 2020). However, it is
important to assess the empirical evidence for such approaches;
that is, we need to identify when in time the syntactically con-
ditioned prosodic information exists rather than simply presup-
posing that it exists at phrase edges.

The question of how to temporally localize syntactically
conditioned prosodic information has not been thoroughly ad-
dressed in the literature. Previous studies have mostly examined
fixed regions in the vicinity of phrase boundaries – for example
a few segments or syllables at phrase-final or initial position –
and have targeted a handful of specific types of measurements
that are believed to be relevant (e.g. F0 values, segmental du-
rations, etc.). However, it is unclear exactly how far from a
boundary we might identify relevant prosodic information, and

it is usually unknown whether the measurements used are the
most appropriate ones.

In this context, the current study explores a novel method
for systematically detecting prosodic information that is associ-
ated with a syntactic contrast. Specifically, we conduct analyses
in which a neural network is trained to classify syntactic cate-
gories from multi-dimensional articulatory and acoustic input
data. Then, network accuracy is assessed on unseen test data.
This is repeated with multiple times with randomly sampled
training and test sets, for a given analysis window. To tempo-
rally localize prosodic information, we systematically vary the
sizes and locations of analysis windows. This method is based
on the analysis procedure presented in Tilsen (2020).

One of the important features of the novel methodology is
that we use multi-dimensional data in the analyses. Typically,
studies measure relevant acoustic and articulatory variables and
run statistical tests to determine whether there is a significant
difference. This method, however, can be problematic for sev-
eral reasons. First, it is possible that an interaction between the
selected measurements, not the measurements per se, better re-
flects a syntactic difference. Moreover, these interactions may
be nonlinear, so including interaction terms in a linear model
will not solve the problem. Second, there may be information
in acoustic and articulatory signals that we are not cognizant
of, but which in fact is relevant to a syntactic difference. For
example, when investigating articulatory measures associated
with a syntactic contrast, researchers typically examine mea-
sures of movement timing or amplitude derived from the hori-
zontal and vertical coordinates of the tract variables associated
with constriction gestures (e.g. lip aperture, tongue tip constric-
tion degree, etc.); yet, it is conceivable that the position of jaw
can provide crucial information on a syntactic difference. Con-
ventional analyses tend to reduce the high-dimensional acoustic
and articulatory signals that we observe to a handful of vari-
ables. Our analysis method avoids this reduction by using the
complex, high dimensional acoustic and articulatory signals of
speech directly.

The syntactic contrast that we focus on is between a non-
restrictive relative clause (NRRC) and a restrictive relative
clause (RRC), examples of which are shown in (1). NRRCs and
RRCs are syntactically and semantically distinct (see Arnold
2007, for an overview). In example (1), the NRRC does not
contribute to identifying the referent (Mr. Hodd), but it simply
gives extra information about the referent (i.e. similar to a par-
enthetical). However, the RRC in (1) is essential to identifying
the referent from a set of possible referents. NRRCs are often
separated from the main clause by commas, but RRCs are not.

Following these syntactic differences, researchers have ar-
gued that the two types of RCs differ in their prosodic struc-
tures. For example, Selkirk (2005) represents the structural
differences as in (1), where the NRRC constitutes an interme-
diate phrase (ip) on its own, while the RRC constitutes an ip
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together with the main clause subject. On the other hand, Ne-
spor and Vogel (1986) argued that there is a mandatory into-
national phrase (IP) boundary before and after an NRRC, but
not in RRC. Although theories differ on specific predictions on
their prosodic organizations, they all predict that the two types
of RCs will differ in the vicinity of the phrase boundaries, be-
fore and after the relative clause. The pre- and post-relative
clause boundaries will be referred to as B1 and B2 respectively
in the current study.
(1) Non-restrictive relative clause (NRRC)

Context: There is one Mr. Hodd. He knows Mr. Robb.
[[A Mr. Hodd,]ip [who knows Mr. Robb,]ip]IP

[[often plays tennis.]ip]IP

Restrictive relative clause (RRC)
Context: There are two Mr. Hodds. Only one knows Mr.
Robb.
[[The Mr. Hodd who knows Mr. Robb]ip

[often plays tennis.]ip]IP

The temporal localization method allows us to address
several different questions regarding syntactically conditioned
prosodic information. First, we can test whether the predic-
tions from the theories of syntax-prosody mapping are correct
such that different syntactic structures have distinct prosodic
organizations and thus mainly differ at phrase boundaries. If
this boundary-locality is correct, we expect to observe high
network accuracy in analysis windows which are near phrase
boundaries. Second, we can examine whether syntactically
conditioned prosodic information is distributed similarly before
and after RCs, as well as examine whether there are across-
participant differences. Such variation will inform our theories
of the syntax-prosody mapping.

2. Methods

2.1. Participants and task

Six native speakers of English (3M, 3F) participated in the ex-
periment. Participants were seated facing a computer monitor in
a quiet room. In each trial, participants first saw a context sen-
tence and then a target sentence, as in example (1). The context
sentence was provided to draw attention to the syntactic con-
trast between NRRC and RRC. Definite/indefinite determiners
in the beginning of the target sentence also facilitated the rele-
vant interpretations of the target sentences. Participants were in-
structed to read both sentences silently when they first appeared.
After 1.5 seconds, a moving rate cue appeared. This was a red
box that moved from left to right across the screen at a constant
speed; the period of time it took for the rate cue to move across
the screen varied in ten steps. When the cue stopped moving,
participants were instructed to read the target sentence in a way
that reflected the speed of the rate cue. Crucially, they were
instructed to vary their speech rate to correspond with their im-
pression of how fast or slow the cue moved. The motion-based
rate cue allowed us to elicit a continuous variation of speech
rate of the two types of RCs. There were six blocks of 40 trials
in each experimental session. Participants produced one type of
RC throughout a block, and the blocks alternated between the
two types of RCs.

The target words in the experiment were the names that fol-
lowed “Mr.” The names started in /h/, /r/, or /l/ and ended in
/b/ or /d/. All the names had the same vowel /a/. Participants
were instructed not to put emphasis on any of the words in the
sentence, particularly the target words.

2.2. Data collection and processing

Articulatory data were collected with an NDI Wave Electro-
magnetic Articulograph (EMA) with a sampling rate of 400
Hz. Articulator sensors were located mid-sagitally on the up-
per lip (UL), lower lip (LL), gum below the lower incisors
(JAW), tongue tip (TT, approximately 1cm from the apex of the
tongue), and tongue body (TB, approximately 4-5 cm posterior
from the TT). Reference sensors were located on the nasion and
left and right mastoid processes and were used to correct for
head movement. The reference and articulator sensors were fil-
tered at 5 and 10 Hz respectively using low-pass Butterworth
filters.

Acoustic data were collected at a sampling rate of 22050
Hz. In order to locate prosodic boundaries in the acoustic and
articulatory signals, acoustic segmentations were conducted.
For each participant, six trials were manually labelled and used
to train HMMs in the Kaldi speech recognition toolkit. A forced
alignment was conducted for the remaining trials. The align-
ments of all trials were manually inspected and corrected when
necessary. A total of 240 trials were collected for each of the
six participants. Out of 1440 trials, 127 trials (8.8%) that had
speech errors, disfluencies, or problems in data collection were
excluded from analyses.

2.3. Data analysis

Inputs to neural network analyses were composed of 86 di-
mensions: 20 articulatory dimensions and 66 acoustic dimen-
sions. Articulatory dimensions were the horizontal and verti-
cal positions of the five articulator sensors (UL, LL, JAW, TT,
TB) and each of their velocities. Acoustic dimensions were 33-
dimensional broadband spectrogram and their first differences.
Figure 1 shows an example of the analyses input where each
dimension is represented as a horizontal line.

Figure 1: An example of differently sized analysis win-

dows. Each horizontal line represents articulatory (horizon-

tal/vertical coordinates of five articulator sensors) or acoustic

(33-dimensional broadband spectrogram) information. The first

differences of the articulatory and acoustic signals were also in-

cluded as an input (not shown). The information that was used

for different analysis windows is represented with colored lines

in each panel. In these examples, all the inputs were aligned

to the end of the target name (window center: 0s) but varied in

size (the title of each panel).

For analyses at each boundary, the signals across trials were
aligned to the end of the pre-boundary segment (i.e. end of the
target word), which was determined from the forced alignment.
This alignment point is time 0s in the examples in Figure 1.
The centers and sizes of the analysis windows were then sys-
tematically varied. Window centers were defined in 25 ms steps
relative to the boundary, up to ±500ms; thus, for each B1 and
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Figure 2: Classification results at B1 (the pre-RC boundary) shown in heatmaps along with the mean segment/word durations. The

x-axis shows the location of window centers, and the y-axis shows the window size. The colors and numbers represent the network

classification accuracy (%). The diagonal lines indicate the left and right edges of the analysis windows at the alignment point. Gray

areas are windows which are not analyzed because they would contain information outside of the time periods that we examine.

B2, a total of 41 window centers were investigated. The size of
the analysis window varied from 25ms to 500ms in a 25ms step.
The analysis windows extended to both sides of the center such
that the 50ms window contained half of the information (25ms)
on the left side of the center and the other half (25ms) on the
right side of the center (see Figure 1). At each window cen-
ter, only the windows that contain information within ±500ms
of the alignment point were investigated. Therefore, at center
0s (the alignment point), all 20 windows were investigated (i.e.
25:25:500ms), whereas at center 0.4s, only eight windows were
investigated (i.e. 25:25:200ms). Before training/testing the net-
works, data in each analysis window were normalized to zero
mean and unit variance by dimension within each participant.

All analyses were conducted within participant, because
between-participant differences in vocal tract structure or
prosodic behavior are likely to make it more difficult for the
networks to learn to classify the two types of RCs. Twenty
repetitions of the training-testing procedure were conducted for
each analysis window. In each repetition, half of the trials
were randomly assigned to a training set, and the other half
were assigned as a test set. The neural network architecture we
used had two bidirectional LSTM (biLSTM) layers, with 40%
dropout after each layer. We analyzed the mean network accu-
racy on the unseen test data; thus, accuracy can be interpreted
to reflect the ability of the network to learn generalizable map-
pings from inputs to syntactic categories. We balanced type
of RC, coda of the target word, and speech rate in generating
the train and test sets; for speech rate, ten different rates were
divided into five rate categories. Note that the network archi-
tecture and training parameters we used were based on those
in Tilsen (2020), and it is important to keep in mind that these
are not necessarily optimal; therefore, the classification accura-
cies we obtain can only be used to infer lower bounds on the
temporal extent of syntactically relevant information.

3. Results

The results showed two different distributional patterns of syn-
tactically conditioned prosodic information: the information
was either widely distributed around the boundaries or more
narrowly distributed, being concentrated at specific locations.
Figure 2 shows heatmaps of the classification results at B1 (the
pre-RC boundary). The widely distributed pattern was observed
for Participants 1, 3, and 6: classification accuracy was rela-
tively high throughout the pre- and post-boundary regions. No-
tice that at the critical regions, the networks showed high ac-
curacy even at very small window sizes. This suggests that
there was sufficient amount of information that distinguishes
the two types of RCs in just one (25ms window size) or two
frames (50ms window size) of the data. On the other hand,
the narrowly distributed pattern was observed for Participants
2, 4, and 5: high classification accuracy was found only at cer-
tain window centers. For those who showed the concentrated
pattern, the region that showed the highest accuracy differed
across participants. While the highest accuracy was found in
the pre-boundary region in Participant 2, it was found in the
post-boundary region in Participant 4 or at the immediate re-
gion around the boundary in Participant 5.

Both widely distributed and narrowly distributed patterns
were also observed at B2, the post-RC boundary (see Figure 3).
At B2, Participants 1, 2, and 5 showed the narrowly distributed
pattern, while Participants 3, 4, and 6 showed the widely dis-
tributed pattern. Although the region that showed high accuracy
was relatively small in Participants 3 and 4, as the highest ac-
curacy was found in both pre- and post-boundary regions, we
identified them to exhibit the widely distributed pattern. As in
B1, participants that showed narrower distribution differed on
where they locate critical information.

Comparing the results from B1 and B2, we found that not
all participants used the same strategy of marking the syntactic
contrast across the two boundaries. While a majority of the
participants (i.e. Participants 2, 3, 5, and 6) showed the same
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Figure 3: Heatmaps of the classification results at B2 (the post-RC boundary). At this boundary, all participants paused after the target

word, which is marked as the blank interval between “B” and “o”.

pattern, Participants 1 and 4 showed different patterns at B1 and
B2. For instance, Participant 1 showed the widely distributed
pattern at B1, but the information was more narrowly distributed
at B2. Additionally, we could not find any common pattern
across participants within B1 and B2; both wide and narrow
distributions were observed at both boundaries.

4. Discussion and conclusion

In sum, this study investigated where in time relative to phrase
boundaries speakers locate prosodic information that distin-
guishes the two types of RCs. Rather than using conventional
analysis methods, we conducted a neural network-based analy-
sis which used multi-dimensional acoustic and articulatory sig-
nals. We observed two distinct distributional patterns: syntac-
tically conditioned prosodic information was either widely dis-
tributed around the boundaries or narrowly distributed at certain
locations. Both patterns were observed at B1 and B2. Further-
more, there were participants who did not use the same strategy
of marking syntactic differences across the two boundaries.

Contrary to the predictions of many syntax-prosody inter-
face theories, our findings showed that the information that dis-
tinguishes the two RCs is not necessarily restricted to the im-
mediate vicinities of phrases boundaries; rather, the two RCs
can differ at various locations around the boundaries. Further
investigations should be conducted to find out why we see var-
ious patterns; for example, the two RCs may not just differ in
prosodic organization but differ in other factors such as promi-
nence structure. Yet, our findings show that it is important to
investigate a wider region around the boundaries to accurately
examine how distinct syntactic structures are produced differ-
ently. Additionally, the location of syntactically conditioned
prosodic information varied across participants and also across
boundaries. This poses a challenge to those theories which ar-
gue for an invariant mapping between syntactic structure and
prosodic organization.

The findings from the current study propose a several direc-
tions for future research. First, F0 data may provide significant

information on how speakers mark syntactic contrasts in their
utterance. Second, we can conduct the same network analysis
but with varying inputs and find out what type of information
contributes most to the distinction between the two RCs. For
instance, it is possible that acoustic signals contribute signifi-
cantly to network accuracy in some participants, while articula-
tory signals are crucial for other participants. Even within the
same participant, different types of information would affect the
network classification differently depending on the location in
an utterance.

Overall, this study showed how speakers convey syntactic
contrasts through prosody, specifically focusing on its tempo-
ral aspect. Crucially, this study demonstrated that our novel
network-based analysis method is a powerful tool to localize
temporal information. Although this method was used to specif-
ically examine the syntactic contrast, it has a potential to be ap-
plied to a wide variety of contexts in phonetic research.
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